Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Emerg Microbes Infect ; : 2332667, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494746

RESUMO

Clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses have caused large outbreaks within avian populations on five continents, with concurrent spillover into a variety of mammalian species. Mutations associated with mammalian adaptation have been sporadically identified in avian isolates, and more frequently among mammalian isolates following infection. Reports of human infection with A(H5N1) viruses following contact with infected wildlife have been reported on multiple continents, highlighting the need for pandemic risk assessment of these viruses. In this study, the pathogenicity and transmissibility of A/Chile/25945/2023 HPAI A(H5N1) virus, a novel reassortment with four gene segments (PB1, PB2, NP, MP) from North America lineage, isolated from a severe human case in Chile, was evaluated in vitro and using the ferret model. This virus possessed a high capacity to cause fatal disease, characterized by high morbidity and extrapulmonary spread in virus-inoculated ferrets. The virus was capable of transmission to naïve contacts in a direct contact setting, with contact animals similarly exhibiting severe disease, but did not exhibit productive transmission in respiratory droplet or fomite transmission models. Our results indicate that the virus would need to acquire an airborne transmissible phenotype in mammals to potentially cause a pandemic. Nonetheless, this work warrants continuous monitoring of mammalian adaptations in avian viruses, especially in strains isolated from humans, to aid pandemic preparedness efforts.

2.
J Infect Dis ; 229(4): 1107-1111, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37602528

RESUMO

The sporadic occurrence of human infections with swine-origin influenza A(H3N2) viruses and the continual emergence of novel A(H3N2) viruses in swine herds underscore the necessity for ongoing assessment of the pandemic risk posed by these viruses. Here, we selected 3 recent novel swine-origin A(H3N2) viruses isolated between 2017 to 2020, bearing hemagglutinins from the 1990.1, 2010.1, or 2010.2 clades, and evaluated their ability to cause disease and transmit in a ferret model. We conclude that despite considerable genetic variances, all 3 contemporary swine-origin A(H3N2) viruses displayed a capacity for robust replication in the ferret respiratory tract and were also capable of limited airborne transmission. These findings highlight the continued public health risk of swine-origin A(H3N2) strains, especially in human populations with low cross-reactive immunity.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Humanos , Animais , Estados Unidos/epidemiologia , Suínos , Vírus da Influenza A Subtipo H3N2/genética , Furões
3.
mBio ; 15(1): e0295723, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112470

RESUMO

IMPORTANCE: Despite the accumulation of evidence showing that airborne transmissible influenza A virus (IAV) typically has a lower pH threshold for hemagglutinin (HA) fusion activation, the underlying mechanism for such a link remains unclear. In our study, by using a pair of isogenic recombinant A(H9N2) viruses with a phenotypical difference in virus airborne transmission in a ferret model due to an acid-destabilizing mutation (HA1-Y17H) in the HA, we demonstrate that an acid-stable A(H9N2) virus possesses a multitude of advantages over its less stable counterpart, including better fitness in the ferret respiratory tract, more effective aerosol emission from infected animals, and improved host susceptibility. Our study provides supporting evidence for the requirement of acid stability in efficient airborne transmission of IAV and sheds light on fundamental mechanisms for virus airborne transmission.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Animais , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/metabolismo , Aerossóis e Gotículas Respiratórios/virologia , Influenza Humana/transmissão , Humanos , Modelos Animais de Doenças , Substituição de Aminoácidos
4.
Virology ; 582: 57-61, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028126

RESUMO

Competition assays were conducted in vitro and in vivo to examine how the Delta (B.1.617.2) variant displaced the prototype Washington/1/2020 (WA/1) strain. While WA/1 virus exhibited a moderately increased proportion compared to that in the inoculum following co-infection in human respiratory cells, Delta variant possessed a substantial in vivo fitness advantage as this virus becoming predominant in both inoculated and contact animals. This work identifies critical traits of the Delta variant that likely played a role in it becoming a dominant variant and highlights the necessities of employing multiple model systems to assess the fitness of newly emerged SARS-CoV-2 variants.


Assuntos
COVID-19 , Furões , Animais , Humanos , SARS-CoV-2/genética , Bioensaio
6.
Commun Biol ; 6(1): 90, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690690

RESUMO

The ferret transmission model is routinely used to evaluate the pandemic potential of newly emerging influenza A viruses. However, concurrent measurement of viral load in the air is typically not a component of such studies. To address this knowledge gap, we measured the levels of virus in ferret nasal washes as well as viral RNA emitted into the air for 14 diverse influenza viruses, encompassing human-, swine-, and avian-origin strains. Here we show that transmissible viruses display robust replication and fast release into the air. In contrast, poorly- and non-transmissible viruses show significantly reduced or delayed replication along with lower detection of airborne viral RNA at early time points post inoculation. These findings indicate that efficient ferret-to-ferret transmission via the air is directly associated with fast emission of virus-laden particles; as such, quantification of viral RNA in the air represents a useful addition to established assessments of new influenza virus strains.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Humanos , Animais , Suínos , Furões , Aves , RNA Viral
7.
J Virol ; 97(1): e0153622, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602361

RESUMO

As influenza A viruses (IAV) continue to cross species barriers and cause human infection, the establishment of risk assessment rubrics has improved pandemic preparedness efforts. In vivo pathogenicity and transmissibility evaluations in the ferret model represent a critical component of this work. As the relative contribution of in vitro experimentation to these rubrics has not been closely examined, we sought to evaluate to what extent viral titer measurements over the course of in vitro infections are predictive or correlates of nasal wash and tissue measurements for IAV infections in vivo. We compiled data from ferrets inoculated with an extensive panel of over 50 human and zoonotic IAV (inclusive of swine-origin and high- and low-pathogenicity avian influenza viruses associated with human infection) under a consistent protocol, with all viruses concurrently tested in a human bronchial epithelial cell line (Calu-3). Viral titers in ferret nasal wash specimens and nasal turbinate tissue correlated positively with peak titer in Calu-3 cells, whereas additional phenotypic and molecular determinants of influenza virus virulence and transmissibility in ferrets varied in their association with in vitro viral titer measurements. Mathematical modeling was used to estimate more generalizable key replication kinetic parameters from raw in vitro viral titers, revealing commonalities between viral infection progression in vivo and in vitro. Meta-analyses inclusive of IAV that display a diverse range of phenotypes in ferrets, interpreted with mathematical modeling of viral kinetic parameters, can provide critical information supporting a more rigorous and appropriate contextualization of in vitro experiments toward pandemic preparedness. IMPORTANCE Both in vitro and in vivo models are employed for assessing the pandemic potential of novel and emerging influenza A viruses in laboratory settings, but systematic examinations of how well viral titer measurements obtained in vitro align with results from in vivo experimentation are not frequently performed. We show that certain viral titer measurements following infection of a human bronchial epithelial cell line are positively correlated with viral titers in specimens collected from virus-inoculated ferrets and employ mathematical modeling to identify commonalities between viral infection progression between both models. These analyses provide a necessary first step in enhanced interpretation and incorporation of in vitro-derived data in risk assessment activities and highlight the utility of employing mathematical modeling approaches to more closely examine features of virus replication not identifiable by experimental studies alone.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Medição de Risco , Animais , Humanos , Furões , Vírus da Influenza A/patogenicidade , Influenza Humana , Infecções por Orthomyxoviridae/patologia , Medição de Risco/métodos , Suínos , Replicação Viral , Linhagem Celular , Técnicas In Vitro
8.
J Virol ; 96(24): e0140322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448801

RESUMO

Despite reports of confirmed human infection following ocular exposure with both influenza A virus (IAV) and SARS-CoV-2, the dynamics of virus spread throughout oculonasal tissues and the relative capacity of virus transmission following ocular inoculation remain poorly understood. Furthermore, the impact of exposure route on subsequent release of airborne viral particles into the air has not been examined previously. To assess this, ferrets were inoculated by the ocular route with A(H1N1)pdm09 and A(H7N9) IAVs and two SARS-CoV-2 (early pandemic Washington/1 and Delta variant) viruses. Virus replication was assessed in both respiratory and ocular specimens, and transmission was evaluated in direct contact or respiratory droplet settings. Viral RNA in aerosols shed by inoculated ferrets was quantified with a two-stage cyclone aerosol sampler (National Institute for Occupational Safety and Health [NIOSH]). All IAV and SARS-CoV-2 viruses mounted a productive and transmissible infection in ferrets following ocular inoculation, with peak viral titers and release of virus-laden aerosols from ferrets indistinguishable from those from ferrets inoculated by previously characterized intranasal inoculation methods. Viral RNA was detected in ferret conjunctival washes from all viruses examined, though infectious virus in this specimen was recovered only following IAV inoculation. Low-dose ocular-only aerosol exposure or inhalation aerosol exposure of ferrets to IAV similarly led to productive infection of ferrets and shedding of aerosolized virus. Viral evolution during infection was comparable between all inoculation routes examined. These data support that both IAV and SARS-CoV-2 can establish a high-titer mammalian infection following ocular exposure that is associated with rapid detection of virus-laden aerosols shed by inoculated animals. IMPORTANCE Documented human infection with influenza viruses and SARS-CoV-2 has been reported among individuals wearing respiratory protection in the absence of eye protection, highlighting the capacity of these respiratory tract-tropic viruses to exploit nonrespiratory routes of exposure to initiate productive infection. However, comprehensive evaluations of how ocular exposure may modulate virus pathogenicity and transmissibility in mammals relative to respiratory exposure are limited and have not investigated multiple virus families side by side. Using the ferret model, we show that ocular exposure with multiple strains of either coronaviruses or influenza A viruses leads to an infection that results in shedding of detectable aerosolized virus from inoculated animals, contributing toward onward transmission of both viruses to susceptible contacts. Collectively, these studies support that the ocular surface represents a susceptible mucosal surface that, if exposed to a sufficient quantity of either virus, permits establishment of an infection which is similarly transmissible as that following respiratory exposure.


Assuntos
COVID-19 , Infecções por Orthomyxoviridae , Animais , Humanos , COVID-19/transmissão , COVID-19/virologia , Modelos Animais de Doenças , Furões , Vírus da Influenza A Subtipo H1N1 , Subtipo H7N9 do Vírus da Influenza A , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Aerossóis e Gotículas Respiratórios , RNA Viral/isolamento & purificação , SARS-CoV-2 , Eliminação de Partículas Virais
9.
mBio ; 13(5): e0242122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135377

RESUMO

The continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans necessitates evaluation of variants for enhanced virulence and transmission. We used the ferret model to perform a comparative analysis of four SARS-CoV-2 strains, including an early pandemic isolate from the United States (WA1), and representatives of the Alpha, Beta, and Delta lineages. While Beta virus was not capable of pronounced replication in ferrets, WA1, Alpha, and Delta viruses productively replicated in the ferret upper respiratory tract, despite causing only mild disease with no overt histopathological changes. Strain-specific transmissibility was observed; WA1 and Delta viruses transmitted in a direct contact setting, whereas Delta virus was also capable of limited airborne transmission. Viral RNA was shed in exhaled air particles from all inoculated animals but was highest for Delta virus. Prior infection with SARS-CoV-2 offered varied protection against reinfection with either homologous or heterologous variants. Notable genomic variants in the spike protein were most frequently detected following WA1 and Delta virus infection. IMPORTANCE Continued surveillance and risk assessment of emerging SARS-CoV-2 variants are critical for pandemic response and preparedness. As such, in vivo evaluations are indispensable for early detection of variants with enhanced virulence and transmission. Here, we used the ferret model to compare the pathogenicity and transmissibility of an original SARS-CoV-2 isolate (USA-WA1/2020 [WA1]) to those of a panel of Alpha, Beta, and Delta variants, as well as to evaluate protection from homologous and heterologous reinfection. We observed strain-specific differences in replication kinetics in the ferret respiratory tract and virus load emitted into the air, revealing enhanced transmissibility of the Delta virus relative to previously detected strains. Prior infection with SARS-CoV-2 provided varied levels of protection from reinfection, with the Beta strain eliciting the lowest level of protection. Overall, we found that ferrets represent a useful model for comparative assessments of SARS-CoV-2 infection, transmission, and reinfection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Furões , Reinfecção , RNA Viral/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
10.
Emerg Infect Dis ; 28(9): 1913-1915, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35840125

RESUMO

Highly pathogenic avian influenza A(H5N1) viruses have spread rapidly throughout North American flyways in recent months, affecting wild birds in over 40 states. We evaluated the pathogenicity and transmissibility of a representative virus using a ferret model and examined replication kinetics of this virus in human respiratory tract cells.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Aves , Furões , Humanos , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , América do Norte/epidemiologia , Infecções por Orthomyxoviridae/veterinária
11.
Emerg Microbes Infect ; 11(1): 1452-1459, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35537045

RESUMO

Influenza A viruses (IAVs) in the swine reservoir constantly evolve, resulting in expanding genetic and antigenic diversity of strains that occasionally cause infections in humans and pose a threat of emerging as a strain capable of human-to-human transmission. For these reasons, there is an ongoing need for surveillance and characterization of newly emerging strains to aid pandemic preparedness efforts, particularly for the selection of candidate vaccine viruses and conducting risk assessments. Here, we performed a parallel comparison of the pathogenesis and transmission of genetically and antigenically diverse swine-origin A(H1N1) variant (v) and A(H1N2)v, and human seasonal A(H1N1)pdm09 IAVs using the ferret model. Both groups of viruses were capable of replication in the ferret upper respiratory tract; however, variant viruses were more frequently isolated from the lower respiratory tract as compared to the human-adapted viruses. Regardless of virus origin, observed clinical signs of infection differed greatly between strains, with some viruses causing nasal discharge, sneezing and, in some instances, diarrhea in ferrets. The most striking difference between the viruses was the ability to transmit through the air. Human-adapted viruses were capable of airborne transmission between all ferret pairs. In contrast, only one out of the four tested variant viruses was able to transmit via the air as efficiently as the human-adapted viruses. Overall, this work highlights the need for sustained monitoring of emerging swine IAVs to identify strains of concern such as those that are antigenically different from vaccine strains and that possess adaptations required for efficient respiratory droplet transmission in mammals.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Estações do Ano , Suínos
12.
Appl Environ Microbiol ; 88(4): e0227121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34985975

RESUMO

Efficient human-to-human transmission represents a necessary adaptation for a zoonotic influenza A virus (IAV) to cause a pandemic. As such, many emerging IAVs are characterized for transmissibility phenotypes in mammalian models, with an emphasis on elucidating viral determinants of transmission and the role host immune responses contribute to mammalian adaptation. Investigations of virus infectivity and stability in aerosols concurrent with transmission assessments have increased in recent years, enhancing our understanding of this dynamic process. Here, we employed a diverse panel of 17 human and zoonotic IAVs, inclusive of seasonally circulating H1N1 and H3N2 viruses, as well as avian and swine viruses associated with human infection, to evaluate differences in spray factor (a value that assesses efficiency of the aerosolization process), stability, and infectivity following aerosolization. While most seasonal influenza viruses did not exhibit substantial variability within these parameters, there was more heterogeneity among zoonotic influenza viruses, which possess a diverse range of transmission phenotypes. Aging of aerosols at different relative humidities identified strain-specific levels of stability with different profiles identified between zoonotic H3, H5, and H7 subtype viruses associated with human infection. As studies continue to elucidate the complex components governing virus transmissibility, notably aerosol matrices and environmental parameters, considering the relative role of subtype- and strain-specific factors to modulate these parameters will improve our understanding of the pandemic potential of zoonotic influenza A viruses. IMPORTANCE Transmission of respiratory pathogens through the air can facilitate the rapid and expansive spread of infection and disease through a susceptible population. While seasonal influenza viruses are quite capable of airborne spread, there is a lack of knowledge regarding how well influenza viruses remain viable after aerosolization and whether influenza viruses capable of jumping species barriers to cause human infection differ in this property from seasonal strains. We evaluated a diverse panel of influenza viruses associated with human infection (originating from human, avian, and swine reservoirs) for their ability to remain viable after aerosolization in the laboratory under a range of conditions. We found greater diversity among avian and swine-origin viruses compared to seasonal influenza viruses; strain-specific stability was also noted. Although influenza virus stability in aerosols is an underreported property, if molecular markers associated with enhanced stability are identified, we will be able to quickly recognize emerging strains of influenza that present the greatest pandemic threat.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A/genética , Mamíferos , Suínos
13.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32611751

RESUMO

Low-pathogenicity avian influenza A(H9N2) viruses, enzootic in poultry populations in Asia, are associated with fewer confirmed human infections but higher rates of seropositivity compared to A(H5) or A(H7) subtype viruses. Cocirculation of A(H5) and A(H7) viruses leads to the generation of reassortant viruses bearing A(H9N2) internal genes with markers of mammalian adaptation, warranting continued surveillance in both avian and human populations. Here, we describe active surveillance efforts in live poultry markets in Vietnam in 2018 and compare representative viruses to G1 and Y280 lineage viruses that have infected humans. Receptor binding properties, pH thresholds for HA activation, in vitro replication in human respiratory tract cells, and in vivo mammalian pathogenicity and transmissibility were investigated. While A(H9N2) viruses from both poultry and humans exhibited features associated with mammalian adaptation, one human isolate from 2018, A/Anhui-Lujiang/39/2018, exhibited increased capacity for replication and transmission, demonstrating the pandemic potential of A(H9N2) viruses.IMPORTANCE A(H9N2) influenza viruses are widespread in poultry in many parts of the world and for over 20 years have sporadically jumped species barriers to cause human infection. As these viruses continue to diversify genetically and antigenically, it is critical to closely monitor viruses responsible for human infections, to ascertain if A(H9N2) viruses are acquiring properties that make them better suited to infect and spread among humans. In this study, we describe an active poultry surveillance system established in Vietnam to identify the scope of influenza viruses present in live bird markets and the threat they pose to human health. Assessment of a recent A(H9N2) virus isolated from an individual in China in 2018 is also reported, and it was found to exhibit properties of adaptation to humans and, importantly, it shows similarities to strains isolated from the live bird markets of Vietnam.


Assuntos
Evolução Molecular , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/virologia , Influenza Humana/virologia , Fenótipo , Replicação Viral/genética , Animais , Ásia , China , Modelos Animais de Doenças , Feminino , Variação Genética , Humanos , Influenza Aviária/imunologia , Influenza Aviária/transmissão , Influenza Humana/imunologia , Influenza Humana/transmissão , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia , Vietnã
14.
Sci Rep ; 10(1): 12700, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728042

RESUMO

Highly pathogenic avian influenza (HPAI) H5 viruses, of the A/goose/Guangdong/1/1996 lineage, have exhibited substantial geographic spread worldwide since the first detection of H5N1 virus in 1996. Accumulation of mutations in the HA gene has resulted in several phylogenetic clades, while reassortment with other avian influenza viruses has led to the emergence of new virus subtypes (H5Nx), notably H5N2, H5N6, and H5N8. H5Nx viruses represent a threat to both the poultry industry and human health and can cause lethal human disease following virus exposure. Here, HPAI H5N6 and H5N2 viruses (isolated between 2014 and 2017) of the 2.3.4.4 clade were assessed for their capacity to replicate in human respiratory tract cells, and to cause disease and transmit in the ferret model. All H5N6 viruses possessed increased virulence in ferrets compared to the H5N2 virus; however, pathogenicity profiles varied among the H5N6 viruses tested, from mild infection with sporadic virus dissemination beyond the respiratory tract, to severe disease with fatal outcome. Limited transmission between co-housed ferrets was observed with the H5N6 viruses but not with the H5N2 virus. In vitro evaluation of H5Nx virus replication in Calu-3 cells and the identification of mammalian adaptation markers in key genes associated with pathogenesis supports these findings.


Assuntos
Furões/virologia , Vírus da Influenza A/patogenicidade , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/transmissão , Animais , Linhagem Celular , Modelos Animais de Doenças , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N2/patogenicidade , Vírus da Influenza A Subtipo H5N2/fisiologia , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Mutação , Filogenia , Replicação Viral
15.
Emerg Microbes Infect ; 9(1): 1037-1045, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32449503

RESUMO

ABSTRACTLow pathogenic avian influenza (LPAI) H7 subtype viruses are infrequently, but persistently, associated with outbreaks in poultry in North America. These LPAI outbreaks provide opportunities for the virus to develop enhanced virulence and transmissibility in mammals and have previously resulted in both occasional acquisition of a highly pathogenic avian influenza (HPAI) phenotype in birds and sporadic cases of human infection. Two notable LPAI H7 subtype viruses caused outbreaks in 2018 in North America: LPAI H7N1 virus in chickens and turkeys, representing the first confirmed H7N1 infection in poultry farms in the United States, and LPAI H7N3 virus in turkeys, a virus subtype often associated with LPAI-to-HPAI phenotypes. Here, we investigated the replication capacity of representative viruses from these outbreaks in human respiratory tract cells and mammalian pathogenicity and transmissibility in the mouse and ferret models. We found that the LPAI H7 viruses replicated to high titre in human cells, reaching mean peak titres generally comparable to HPAI H7 viruses. Replication was efficient in both mammalian species, causing mild infection, with virus primarily limited to respiratory tract tissues. The H7 viruses demonstrated a capacity to transmit to naïve ferrets in a direct contact setting. These data support the need to perform routine risk assessments of LPAI H7 subtype viruses, even in the absence of confirmed human infection.


Assuntos
Vírus da Influenza A Subtipo H7N1/patogenicidade , Vírus da Influenza A Subtipo H7N3/patogenicidade , Influenza Aviária/transmissão , Doenças das Aves Domésticas/transmissão , Animais , Brônquios/citologia , Brônquios/virologia , Linhagem Celular , Galinhas/virologia , Surtos de Doenças , Células Epiteliais/virologia , Feminino , Furões/virologia , Humanos , Influenza Aviária/virologia , Influenza Humana/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , América do Norte , Infecções por Orthomyxoviridae/virologia , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia , Perus/virologia , Virulência
16.
Artigo em Inglês | MEDLINE | ID: mdl-31871233

RESUMO

As influenza A viruses continue to jump species barriers, data generated in the ferret model to assess influenza virus pathogenicity, transmissibility, and tropism of these novel strains continues to inform an increasing scope of public health-based applications. This review presents the suitability of ferrets as a small mammalian model for influenza viruses and describes the breadth of pathogenicity and transmissibility profiles possible in this species following inoculation with a diverse range of viruses. Adaptation of aerobiology-based techniques and analyses have furthered our understanding of data obtained from this model and provide insight into the capacity of novel and emerging influenza viruses to cause human infection and disease.


Assuntos
Influenza Humana/transmissão , Orthomyxoviridae/patogenicidade , Animais , Modelos Animais de Doenças , Furões , Humanos , Medição de Risco , Zoonoses Virais/transmissão , Virulência
17.
Virology ; 537: 31-35, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430632

RESUMO

Swine-origin (variant) H1 influenza A viruses associated with numerous human infections in North America in recent years have been extensively studied in vitro and in mammalian models to determine their pandemic potential. However, limited information is available on Eurasian avian-like lineage variant H1 influenza viruses. In 2015, A/Hunan/42443/2015 virus was isolated from a child in China with a severe infection. Molecular analysis revealed that this virus possessed several key virulence and human adaptation markers. Similar to what was previously observed in C57BL/6J mice, we report here that in the BALB/c mouse model, A/Hunan/42443/2015 virus caused more severe morbidity and higher mortality than did North American variant H1 virus isolates. Furthermore, the virus efficiently replicated throughout the respiratory tract of ferrets and exhibited a capacity for transmission in this model, underscoring the need to monitor zoonotic viruses that cross the species barrier as they continue to pose a pandemic threat.


Assuntos
Transmissão de Doença Infecciosa , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/virologia , Infecções por Orthomyxoviridae/patologia , Vírus Reordenados/crescimento & desenvolvimento , Vírus Reordenados/patogenicidade , Animais , China , Modelos Animais de Doenças , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Análise de Sobrevida , Virulência
18.
Virology ; 535: 232-240, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31325838

RESUMO

We previously demonstrated that despite no airborne transmissibility increase compared to low pathogenic avian influenza viruses, select human isolates of highly pathogenic avian influenza A(H7N9) virus exhibit greater virulence in animal models and a lower threshold pH for fusion. In the current study, we utilized both in vitro and in vivo approaches to identify key residues responsible for hemagglutinin (HA) intracellular cleavage, acid stability, and virulence in mice. We found that the four amino acid insertion (-KRTA-) at the HA cleavage site of A/Taiwan/1/2017 virus is essential for HA intracellular cleavage and contributes to disease in mice. Furthermore, a lysine to glutamic acid mutation at position HA2-64 increased the threshold pH for HA activation, reduced virus stability, and replication in mice. Identification of a key residue responsible for enhanced acid stability of A(H7N9) viruses is of great significance for future surveillance activities and improvements in vaccine stability.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Subtipo H7N9 do Vírus da Influenza A/crescimento & desenvolvimento , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Concentração de Íons de Hidrogênio , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Humana/virologia , Camundongos , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Estabilidade Proteica , Proteólise , Virulência , Fatores de Virulência/genética
20.
Appl Environ Microbiol ; 85(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877121

RESUMO

The relative importance of influenza virus transmission via aerosols is not fully understood, but experimental data suggest that aerosol transmission may represent a critical mode of influenza virus spread among humans. Decades ago, prototypical laboratory strains of influenza were shown to persist in aerosols; however, there is a paucity of data available covering currently circulating influenza viruses, which differ significantly from their predecessors. In this study, we evaluated the longevity of influenza viruses in aerosols generated in the laboratory. We selected a panel of H1 viruses that exhibit diverse transmission profiles in the ferret model, including four human isolates of swine origin (referred to as variant) and a seasonal strain. By measuring the ratio of viral RNA to infectious virus maintained in aerosols over time, we show that influenza viruses known to transmit efficiently through the air display enhanced stability in an aerosol state for prolonged periods compared to those viruses that do not transmit as efficiently. We then assessed whether H1 influenza virus was still capable of infecting and causing disease in ferrets after being aged in suspended aerosols. Ferrets exposed to very low levels of influenza virus (≤17 PFU) in aerosols aged for 15 or 30 min became infected, with five of six ferrets shedding virus in nasal washes at titers on par with ferrets who inhaled higher doses of unaged influenza virus. We describe here an underreported characteristic of influenza viruses, stability in aerosols, and make a direct connection to the role this characteristic plays in influenza transmission.IMPORTANCE Each time a swine influenza virus transmits to a human, it provides an opportunity for the virus to acquire adaptations needed for sustained human-to-human transmission. Here, we use aerobiology techniques to test the stability of swine-origin H1 subtype viruses in aerosols and evaluate their infectivity in ferrets. Our results show that highly transmissible influenza viruses display enhanced stability in an aerosol state compared to viruses that do not transmit as efficiently. Similar to human-adapted strains, swine-origin influenza viruses are infectious in ferrets at low doses even after prolonged suspension in the air. These data underscore the risk of airborne swine-origin influenza viruses and support the need for continued surveillance and refinement of innovative laboratory methods to investigate mammalian exposure to inhaled pathogens. Determination of the molecular markers that affect the longevity of airborne influenza viruses will improve our ability to quickly identify emerging strains that present the greatest threat to public health.


Assuntos
Aerossóis/análise , Furões , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Animais , Humanos , Infecções por Orthomyxoviridae/virologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA